ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
I. Lux
Nuclear Science and Engineering | Volume 66 | Number 2 | May 1978 | Pages 258-264
Technical Note | doi.org/10.13182/NSE78-A27208
Articles are hosted by Taylor and Francis Online.
The estimation of the variances of different estimators is always a crucial point in practical Monte Carlo calculations. The purpose of this Note is to formulate conditions that, in simplified situations, make track-length estimators more efficient than collision estimators for the estimation of reaction rates in a region. Starting from recent results of Amster and Djomehri in the first section of the Note, an upper limit is given for maximum extension of a nonmultiplying region. In the second section, assuming homogeneous medium and monoenergetic nonmultiplying transport with isotropic collision in the laboratory system, approximate conditions are described concerning the optical mean-chord-length of the region in terms of first-flight collision probabilities. Wigner rational approximation to the first-flight collision probability results in a surprisingly simple upper limit for the mean-chord-length of the region. Finally, the effect of the approximations to the results is discussed and lower and upper bounds, depending on the nonabsorption probability, are established for the reaction rate to be estimated. It is shown that, in practical cases, the approximations provide a lower value of the maximum extension still favorable from the viewpoint of the track-length estimator than the exact calculation.