ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
L. W. Weston, J. H. Todd
Nuclear Science and Engineering | Volume 65 | Number 3 | March 1978 | Pages 454-463
Technical Paper | doi.org/10.13182/NSE78-A27176
Articles are hosted by Taylor and Francis Online.
Neutron capture and fission cross sections of 241Pu have been measured from 0.01 eV to 30 keV, and their ratio has been measured up to 250 keV. The cross sections were normalized at thermal-neutron energies (0.02 to 0.03 eV) to the ENDF/B-IV evaluation. The source of pulsed neutrons was the Oak Ridge Electron Linear Accelerator. The gamma-ray detector used to detect capture and fission events was the “total energy detector,” which is a low-efficiency detector whose average efficiency is forced to be proportional to the energy of the interacting gamma rays by weighting these events according to their pulse height in the scintillator. Fast-neutron scintillation detectors with pulse-shape discrimination were used to detect fission events. The shape of the neutron flux was measured relative to the 10B(n, α) cross section. The measurements are unique for 241Pu in that absorption and fission were determined directly and simultaneously over a wide neutron energy range rather than indirectly by inferring capture from separate fission and total cross-section measurements. The results indicate that the neutron resonance region of the ENDF/B-IV evaluation underestimates capture by a factor of ∼2. Above the resonance region (∼100 eV), there are no previous measurements of the differential capture cross section. These cross sections are important in plutonium-fueled reactors.