ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
J. K. Vaurio, C. Mueller
Nuclear Science and Engineering | Volume 65 | Number 2 | February 1978 | Pages 401-413
Technical Paper | doi.org/10.13182/NSE78-A27167
Articles are hosted by Taylor and Francis Online.
Response surface techniques are presented for obtaining the probability distributions of selected consequences of a liquid-metal fast breeder reactor hypothetical core disruptive accident. The uncertainties of the consequences are considered as a variability of the system and model input parameters used in the accident analysis. Probability distributions are assigned to the input parameters, and parameter values are systematically chosen from these distributions. These input parameters are then used in deterministic consequence analyses that are performed by fast-running analogs of the comprehensive mechanistic accident analysis codes. The results of these deterministic consequence analyses are used to generate the coefficients for response surface functions that approximate the consequences in terms of the selected input parameters. These approximating functions are then used to generate the probability distributions of the consequences with random sampling being used to obtain values for the accident parameters from their distributions. Two different schemes are presented for selecting the knot-point values of the input parameters. The first generates a single second-order polynomial for the entire parameter space; the second generates separate polynomials for specified regions of the parameter space. A technique to handle nonindependent or correlated input parameters is presented. Finally, the calculation of conditional distributions of the consequences and the use of these distributions to define importance distributions of the input parameters are presented. The use of these procedures is illustrated by applications to a postulated loss-of-flow transient with failure to scram in a Clinch River Breeder-type reactor.