ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
B. Strohmaier, M. Uhl, W. K. Matthes
Nuclear Science and Engineering | Volume 65 | Number 2 | February 1978 | Pages 368-384
Technical Paper | doi.org/10.13182/NSE78-A27164
Articles are hosted by Taylor and Francis Online.
Average neutron-induced reaction cross sections for 134–138Ba (the barium isotopes of mass number 134 through 138) for incident energies between 20 keV and 20 MeV have been calculated by means of the optical and the statistical model with consideration of preequilibrium emission. The calculations comprise the total, the nonelastic, the differential elastic, and the (n,γ), (n,xnγ), (n,pγ), (n,pnγ), and (n,npγ) cross sections, as well as the production spectra of neutrons, protons, and gamma rays. For the model calculations, a consistent set of parameters based as much as possible on experimental data was employed. The computed cross sections are compared to available experimental results. Since such theoretical calculations are also of importance for nuclear data evaluation in cases where no experimental data exist, accuracy estimates of the predicted cross sections are given.