ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
B. Strohmaier, M. Uhl, W. K. Matthes
Nuclear Science and Engineering | Volume 65 | Number 2 | February 1978 | Pages 368-384
Technical Paper | doi.org/10.13182/NSE78-A27164
Articles are hosted by Taylor and Francis Online.
Average neutron-induced reaction cross sections for 134–138Ba (the barium isotopes of mass number 134 through 138) for incident energies between 20 keV and 20 MeV have been calculated by means of the optical and the statistical model with consideration of preequilibrium emission. The calculations comprise the total, the nonelastic, the differential elastic, and the (n,γ), (n,xnγ), (n,pγ), (n,pnγ), and (n,npγ) cross sections, as well as the production spectra of neutrons, protons, and gamma rays. For the model calculations, a consistent set of parameters based as much as possible on experimental data was employed. The computed cross sections are compared to available experimental results. Since such theoretical calculations are also of importance for nuclear data evaluation in cases where no experimental data exist, accuracy estimates of the predicted cross sections are given.