ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Edward W. Larsen, Michael Williams
Nuclear Science and Engineering | Volume 65 | Number 2 | February 1978 | Pages 290-302
Technical Paper | doi.org/10.13182/NSE78-A27158
Articles are hosted by Taylor and Francis Online.
We show that in a medium consisting of asymmetric cells, neutrons can “drift,” or diffuse, in a special preferred direction. The drift is caused by selective asymmetric changes in the cross sections in each cell. We describe several physical mechanisms that produce a drift, and we briefly discuss a possible application in a reflector design. (A reflector constructed of asymmetric cells, oriented so that the drift is always directed toward the reactor core, would be more efficient than a homogeneous driftless reflector.) Our theoretical treatment consists of an asymptotic analysis of the one-dimensional neutron transport equation. We show that a simple modification of the diffusion equation describes the neutron drift, and we provide numerical results for several problems. We also numerically compare the solution of an initial value problem for the transport equation in an asymmetric cellular medium to the corresponding diffusion theory problem. The results are in reasonably good agreement for both short and long times.