ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Edward W. Larsen, Michael Williams
Nuclear Science and Engineering | Volume 65 | Number 2 | February 1978 | Pages 290-302
Technical Paper | doi.org/10.13182/NSE78-A27158
Articles are hosted by Taylor and Francis Online.
We show that in a medium consisting of asymmetric cells, neutrons can “drift,” or diffuse, in a special preferred direction. The drift is caused by selective asymmetric changes in the cross sections in each cell. We describe several physical mechanisms that produce a drift, and we briefly discuss a possible application in a reflector design. (A reflector constructed of asymmetric cells, oriented so that the drift is always directed toward the reactor core, would be more efficient than a homogeneous driftless reflector.) Our theoretical treatment consists of an asymptotic analysis of the one-dimensional neutron transport equation. We show that a simple modification of the diffusion equation describes the neutron drift, and we provide numerical results for several problems. We also numerically compare the solution of an initial value problem for the transport equation in an asymmetric cellular medium to the corresponding diffusion theory problem. The results are in reasonably good agreement for both short and long times.