ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Thomas E. Booth, Harvey J. Amster
Nuclear Science and Engineering | Volume 65 | Number 2 | February 1978 | Pages 273-281
Technical Paper | doi.org/10.13182/NSE78-A27156
Articles are hosted by Taylor and Francis Online.
Present theories for predicting expected Monte Carlo errors in neutron transport calculations apply to estimates of flux-weighted integrals sampled directly by scoring individual collisions. To treat track-length estimators, the recent theory of Amster and Djomehri is generalized to allow the score distribution functions to depend on the coordinates of two successive collisions. It has long been known that the expected track length in a region of phase space equals the expected flux integrated over that region, but that the expected statistical error of the Monte Carlo estimate of the track length is different from that of the flux integral obtained by sampling the sum of the reciprocals of the total cross sections for all collisions in the region. These conclusions are shown to be implied by the generalized theory, which provides explicit equations for the expected values and errors of both types of estimators. Sampling expected contributions to the track-length estimator is also treated. Other general properties of the errors for both estimators are derived from the equations and physically interpreted. The actual values of these errors are then obtained and interpreted for a simple specific example.