ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
P. T. Guenther, D. G. Havel, A. B. Smith
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 174-180
Technical Note | doi.org/10.13182/NSE78-A27140
Articles are hosted by Taylor and Francis Online.
Differential elastic neutron scattering cross sections of 206Pb, 207Pb, 208Pb, and 209Bi are measured at incident neutron energy intervals of ∼25 keV from 0.6 to 1.0 MeV. Optical model parameters are obtained from the energy-averaged experimental results for each of the isotopes. The 209Bi model was selected for extrapolation to 238U by introducing a small (N - Z)/A dependence and the known deformation of 238U. Calculated results are descriptive of 238U total neutron cross sections from a few hundred keV to >15.0 MeV and of recently measured differential 238U elastic and inelastic neutron scattering distributions at energies of 3.0 MeV, including new experimental values explicitly obtained for these comparisons. The model and the measurements imply total 238U inelastic neutron scattering cross sections considerably larger than in common applied usage.