ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
P. T. Guenther, D. G. Havel, A. B. Smith
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 174-180
Technical Note | doi.org/10.13182/NSE78-A27140
Articles are hosted by Taylor and Francis Online.
Differential elastic neutron scattering cross sections of 206Pb, 207Pb, 208Pb, and 209Bi are measured at incident neutron energy intervals of ∼25 keV from 0.6 to 1.0 MeV. Optical model parameters are obtained from the energy-averaged experimental results for each of the isotopes. The 209Bi model was selected for extrapolation to 238U by introducing a small (N - Z)/A dependence and the known deformation of 238U. Calculated results are descriptive of 238U total neutron cross sections from a few hundred keV to >15.0 MeV and of recently measured differential 238U elastic and inelastic neutron scattering distributions at energies of 3.0 MeV, including new experimental values explicitly obtained for these comparisons. The model and the measurements imply total 238U inelastic neutron scattering cross sections considerably larger than in common applied usage.