ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Jungchung Jung
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 130-140
Technical Paper | doi.org/10.13182/NSE78-A27131
Articles are hosted by Taylor and Francis Online.
The neutron transport equation in toroidal geometry is numerically solved by making use of the discrete-ordinates SN method. The computer program developed for this computation is capable of treating a multigroup problem with anisotropic scattering. Numerical examples are given for the first wall and blanket system of a conceptual tokamak reactor design that has an aspect ratio of ∼3. To validate the present method, several numerical comparisons have been made with Monte Carlo results as well as with ANISN calculations in the case of an infinite major radius. The toroidal geometry calculation, with a uniform neutron source distribution throughout the plasma region, yields a neutron flux that, at the first wall, is maximum near the top and bottom of the torus. As one moves radially outward from the first wall, the position of the maximum flux rapidly shifts to the outermost point of each poloidal circle, and the flux decreases monotonically along the poloidal circumference until it reaches a minimum at the innermost point of the torus. At ∼10 cm from the first wall, for example, the variation becomes >20%. The one-dimensional infinite cylinder calculation shows an overestimate of flux within the first 1 cm of the first wall compared to the present calculation. In the rest of the first wall and blanket system, the one-dimensional model underestimates the fluxes in the outer region of the torus and overestimates the fluxes in the inner region.