ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Makoto Tsuiki, Katsutada Aoki, Sadanori Yoshimura
Nuclear Science and Engineering | Volume 64 | Number 3 | November 1977 | Pages 724-732
Technical Paper | doi.org/10.13182/NSE77-A27101
Articles are hosted by Taylor and Francis Online.
A theoretical background for the convergence of void iterations in boiling water reactor (BWR) core calculations is considered. First, the process of each void-iteration step is interpreted as a transformation in a set of vectors representing the characteristics of the core, and the condition for convergence is derived in terms of the spectral radius of the transformation operator. Second, to visualize the convergence condition, the concept of a trajectory of channel power is introduced. Third, it is explained that the spectral radius of the transformation operator can be changed by changing the number of source iterations within each void iteration step. Based on this analysis, an optimum number of source iterations, when the Chebyshev polynomial acceleration technique is employed, is estimated for a typical BWR core. Numerical examples, presenting both divergent and convergent cases, show the validity of the present theoretical analysis.