ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
William C. Horak, J. J. Dorning
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 192-207
Technical Paper | doi.org/10.13182/NSE77-A27090
Articles are hosted by Taylor and Francis Online.
A new coarse-mesh computational method for the numerical solution of heat conduction and fluid flow problems is formally developed and applied to sample problems. The method is based upon formal use of Green's functions, which are defined locally over subdomains of the original system under consideration. The formal development of the local Green's function method for the solution of heat conduction problems is presented and discussed. Numerical solutions of sample problems for one-dimensional heat conduction with constant thermal conductivity, one-dimensional heat conduction with temperature-dependent thermal conductivity, and two-dimensional heat conduction with constant thermal conductivity are given, and these results are compared with results obtained using the finite difference and finite element methods. The formal development of the local Green's function method for the solution of fluid flow problems is then also presented and discussed; the numerical solution of a sample problem for simple one-dimensional incompressible fluid flow with viscous heating is also given.