ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
William C. Horak, J. J. Dorning
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 192-207
Technical Paper | doi.org/10.13182/NSE77-A27090
Articles are hosted by Taylor and Francis Online.
A new coarse-mesh computational method for the numerical solution of heat conduction and fluid flow problems is formally developed and applied to sample problems. The method is based upon formal use of Green's functions, which are defined locally over subdomains of the original system under consideration. The formal development of the local Green's function method for the solution of heat conduction problems is presented and discussed. Numerical solutions of sample problems for one-dimensional heat conduction with constant thermal conductivity, one-dimensional heat conduction with temperature-dependent thermal conductivity, and two-dimensional heat conduction with constant thermal conductivity are given, and these results are compared with results obtained using the finite difference and finite element methods. The formal development of the local Green's function method for the solution of fluid flow problems is then also presented and discussed; the numerical solution of a sample problem for simple one-dimensional incompressible fluid flow with viscous heating is also given.