ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
José M. Aragonés, Carol Ahnert, and Nuria García-Herranz
Nuclear Science and Engineering | Volume 157 | Number 1 | September 2007 | Pages 1-15
Technical Paper | doi.org/10.13182/NSE07-A2709
Articles are hosted by Taylor and Francis Online.
In this work we develop and demonstrate the analytic coarse-mesh finite difference (ACMFD) method for multigroup - with any number of groups - and multidimensional diffusion calculations of eigenvalue and external source problems. The first step in this method is to reduce the coupled system of the G multigroup diffusion equations, inside any homogenized region (or node) of any size, to the G independent modal equations in the real or complex eigenspace of the G × G multigroup matrix. The mathematical and numerical analysis of this step is discussed for several reactor media and number of groups.As a second step, we discuss the analytical solutions in the general (complex) modal eigenspace for one-dimensional plane geometry, deriving the generalized Chao's relation among the surface fluxes and the net currents, at a given interface, and the node-average fluxes, essential in the ACMFD method. We also introduce here the treatment of heterogeneous nodes, through modal interface flux discontinuity factors, and show the analytical and numerical application to core-reflector problems, for a single infinite reflector and for reflectors with two layers of different materials.Then, we address the general multidimensional case, with rectangular X-Y-Z geometry considered, showing the equivalency of the methods of transverse integration and incomplete expansion of the multidimensional fluxes, in the real or complex modal eigenspace of the multigroup matrix. A nonlinear iteration scheme is implemented to solve the multigroup multidimensional nodal problem, which has shown a fast and robust convergence in proof-of-principle numerical applications to realistic pressurized water reactor cores, with heterogeneous fuel assemblies and reflectors.