ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
R. L. McCrory, R. L. Morse, K. A. Taggart
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 163-176
Technical Paper | doi.org/10.13182/NSE77-A27087
Articles are hosted by Taylor and Francis Online.
The inertial confinement approach to controlled fusion requires that small thin-walled spherical shells of fuel and other materials be imploded, compressed, and heated by laser or charged particle beams. In most cases of interest, the implosion of such thin shells is unstable to the growth of spherical asymmetries. We have developed and used two numerical simulation techniques to study these instabilities. The first technique is used to study the small amplitude growth of the instabilities by employing a perturbation method. The derivation of the Hamiltonian model on which the technique is based is developed here. The second technique is a fully nonlinear two-dimensional hydrodynamics and heat flow technique that we have used to follow the large-amplitude development and saturation of the instabilities. The examples of calculations shown demonstrate the utility of the method and the range of different saturation phenomena that may be expected.