ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Wayne A. Houlberg, Robert W. Conn
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 141-150
Technical Paper | doi.org/10.13182/NSE77-A27085
Articles are hosted by Taylor and Francis Online.
Research on the development of numerical techniques to simulate the space-time evolution of large tokamak plasmas is reported. A nonuniform spatial mesh technique is employed to allow more accurate calculations in the boundary of reactor-size plasmas. A box integration method is used to maintain the accuracy of central differencing on the nonuniform spatial mesh and to preserve both the particle and energy flux. A variable implicit technique is used for the time expansion. The time-centered (Crank-Nicholson) technique used in most other models generally offers greater accuracy but can lead to severe limitations on the time step. Somewhat more implicit treatments can remove the numerical limitations on the time step without seriously affecting accuracy. The physical time scales, which can change by several orders of magnitude from startup to equilibrium, can then be used to continually adjust the time step throughout a calculation. Sample calculations are presented for a near-term tokamak engineering test reactor and a conceptual tokamak power reactor, UWMAK-III.