ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
Wayne A. Houlberg, Robert W. Conn
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 141-150
Technical Paper | doi.org/10.13182/NSE77-A27085
Articles are hosted by Taylor and Francis Online.
Research on the development of numerical techniques to simulate the space-time evolution of large tokamak plasmas is reported. A nonuniform spatial mesh technique is employed to allow more accurate calculations in the boundary of reactor-size plasmas. A box integration method is used to maintain the accuracy of central differencing on the nonuniform spatial mesh and to preserve both the particle and energy flux. A variable implicit technique is used for the time expansion. The time-centered (Crank-Nicholson) technique used in most other models generally offers greater accuracy but can lead to severe limitations on the time step. Somewhat more implicit treatments can remove the numerical limitations on the time step without seriously affecting accuracy. The physical time scales, which can change by several orders of magnitude from startup to equilibrium, can then be used to continually adjust the time step throughout a calculation. Sample calculations are presented for a near-term tokamak engineering test reactor and a conceptual tokamak power reactor, UWMAK-III.