ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Suresh Garg, Feroz Ahmed, L. S. Kothari
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 500-504
Technical Note | doi.org/10.13182/NSE77-A27064
Articles are hosted by Taylor and Francis Online.
We have extended our earlier calculations of steady-state space- and angle-dependent thermalneutron spectra in small beryllium assemblies to assemblies of much greater transverse dimensions and have studied neutron diffusion up to much greater distances from the source plane, with a view toward looking for a discrete mode of decay. We find that in the forward direction, neutron distribution fails to attain equilibrium inside 140-cm-thick assemblies with transverse dimensions of 150 × 150 cm2, whereas in the backward direction, equilibrium is reached even inside an assembly of transverse dimensions of 80 × 80 cm2. We show that in the forward direction, equilibrium is delayed by the presence of a penetrating beam of uncollided sub-Bragg neutrons of the source. Thus, an experimentalist can hardly hope to observe equilibrium in the forward direction. The calculated value of diffusion length is in excellent agreement with the observed as well as the theoretical values obtained by earlier workers.