ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
The last days of Hallam
The Hallam nuclear power plant, about 25 miles southwest of Lincoln, Neb., was an important part of the Atomic Energy Commission’s Reactor Power Demonstration Program. But in the end, it operated for only 6,271 hours and generated about 192.5 million kilowatt-hours of electric power during its short, 15-month life.
Zbigniew Weiss
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 457-492
Technical Paper | doi.org/10.13182/NSE77-A27062
Articles are hosted by Taylor and Francis Online.
The response matrix equations (RME) are analyzed from two points of view: (a) their computational feasibility, and (b) their consistency with other methods used in reactor analysis. It is shown that RME can be derived directly from the weak form of the diffusion equation without the concept of partial currents, and hence, are also applicable to the description of phenomena, where partial currents have no physical meaning (for example, the conduction of heat). By splitting the high-order RME into a coupled system of single-order equations, the analysis of the convergence properties of the iterative solutions to RME could be greatly simplified. The derived explicit expressions for the convergence ratio were verified by numerical experimentation. As an illustration, the well-known International Atomic Energy Agency benchmark problem has been calculated by two two-dimensional response matrix programs at ASEA-ATOM, CIKADA, and LABAN. In the second part of the paper, the relation of RME to finite difference (FD) equations has been investigated. It was shown that for small mesh sizes, RME are computationally not feasible. For rectangular nodes, an algorithm called the “vectorial model” (VM) was developed, which reduces the amount of unknowns in RME by a factor of 2. This is a generalization to two- and three-dimensional nodes of the author's earlier results. An approximate reduction of VM to scalar equations (one unknown per node) has been discussed, and its relation to recent developments in nodal methods has been emphasized. Several ideas in this paper, such as the improved FD scheme, are far from being completed and therefore should be challenging for further investigation.