ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
W. E. Kinney, F. G. Perey
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 418-429
Technical Paper | doi.org/10.13182/NSE77-A27059
Articles are hosted by Taylor and Francis Online.
High-resolution gamma-ray production cross sections for the 846-keV gamma ray of iron have been measured up to an incident neutron energy of 2100 keV. The measurements were performed using the Oak Ridge Electron Linear Accelerator as the neutron source, and they were obtained by a ratio measurement to the 7Li 477-keV gamma-ray cross sections. Three NE-213 detectors were used at 30, 90, and 125 deg to derive the total inelastic cross sections and the angular distributions. The 1250 angular distributions measured with ∼0.1 ns/m resolution show considerable fluctuations as a function of energy over the resonances seen in the inelastic cross sections. The results are compared to the ENDF/B-IV evaluation, high-resolution data at 125 deg and, after suitable averaging, with recent monoenergetic neutron source data that average over the structure experimentally. The general consistency of the data with recent measurements, using different techniques and normalization procedures, indicates that our knowledge of this important cross section for fission reactor applications may now be known to an accuracy better than 10%. This is a significant achievement in view of the wide scatter of earlier data on such a fluctuating cross section.