ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tadashi Yoshida
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 376-390
Technical Paper | doi.org/10.13182/NSE77-A27055
Articles are hosted by Taylor and Francis Online.
The gross theory of beta decay developed by Takahashi and Yamada has been applied to an estimation of nuclear decay heat of short-lived fission products, that is, to the average energies of emitted beta particles and gamma rays and the half-lives. For short-lived fission products for which no experimental information is available, calculations have been performed with the most probable value of a parameter Q00, which represents the energy of the lowest level actually fed by the beta transition. The results have been summarized in the form of several simple formulas, which are functions of the Q value and mass number of the nuclide in question. When the half-life is determined experimentally, the certainty of the calculated results for the average released energies can be improved by means of a search for the best Q00 value based on the measured half-life for each nuclide. Evaluation of confidence bands is also performed for the calculated results.