ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tadashi Yoshida
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 376-390
Technical Paper | doi.org/10.13182/NSE77-A27055
Articles are hosted by Taylor and Francis Online.
The gross theory of beta decay developed by Takahashi and Yamada has been applied to an estimation of nuclear decay heat of short-lived fission products, that is, to the average energies of emitted beta particles and gamma rays and the half-lives. For short-lived fission products for which no experimental information is available, calculations have been performed with the most probable value of a parameter Q00, which represents the energy of the lowest level actually fed by the beta transition. The results have been summarized in the form of several simple formulas, which are functions of the Q value and mass number of the nuclide in question. When the half-life is determined experimentally, the certainty of the calculated results for the average released energies can be improved by means of a search for the best Q00 value based on the measured half-life for each nuclide. Evaluation of confidence bands is also performed for the calculated results.