ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Tadashi Yoshida
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 376-390
Technical Paper | doi.org/10.13182/NSE77-A27055
Articles are hosted by Taylor and Francis Online.
The gross theory of beta decay developed by Takahashi and Yamada has been applied to an estimation of nuclear decay heat of short-lived fission products, that is, to the average energies of emitted beta particles and gamma rays and the half-lives. For short-lived fission products for which no experimental information is available, calculations have been performed with the most probable value of a parameter Q00, which represents the energy of the lowest level actually fed by the beta transition. The results have been summarized in the form of several simple formulas, which are functions of the Q value and mass number of the nuclide in question. When the half-life is determined experimentally, the certainty of the calculated results for the average released energies can be improved by means of a search for the best Q00 value based on the measured half-life for each nuclide. Evaluation of confidence bands is also performed for the calculated results.