ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
L. L. Briggs, E. E. Lewis
Nuclear Science and Engineering | Volume 63 | Number 3 | July 1977 | Pages 225-235
Technical Paper | doi.org/10.13182/NSE77-A27035
Articles are hosted by Taylor and Francis Online.
A new coarse-mesh technique, the constrained finite element method, is formulated from the variational form of the even-parity transport equation: Linear finite elements in space are combined with a P1 constraint on the angular trial functions at selected nodes to obtain a coarse-mesh three-point difference scheme for the scalar flux. Beginning with the same variational form of the transport equation, response matrix equations are derived that differ from the constrained finite element method only in the angular approximation made at the coarsemesh nodes. The two techniques are compared to each other, to S8 reference solutions, and to diffusion calculations for a number of one-group slab geometry problems involving both homogeneous media and lattice cells; they are found to be of comparable accuracy and efficiency. The generalization of the constrained finite element method is discussed.