ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
L. L. Briggs, E. E. Lewis
Nuclear Science and Engineering | Volume 63 | Number 3 | July 1977 | Pages 225-235
Technical Paper | doi.org/10.13182/NSE77-A27035
Articles are hosted by Taylor and Francis Online.
A new coarse-mesh technique, the constrained finite element method, is formulated from the variational form of the even-parity transport equation: Linear finite elements in space are combined with a P1 constraint on the angular trial functions at selected nodes to obtain a coarse-mesh three-point difference scheme for the scalar flux. Beginning with the same variational form of the transport equation, response matrix equations are derived that differ from the constrained finite element method only in the angular approximation made at the coarsemesh nodes. The two techniques are compared to each other, to S8 reference solutions, and to diffusion calculations for a number of one-group slab geometry problems involving both homogeneous media and lattice cells; they are found to be of comparable accuracy and efficiency. The generalization of the constrained finite element method is discussed.