ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
L. L. Briggs, E. E. Lewis
Nuclear Science and Engineering | Volume 63 | Number 3 | July 1977 | Pages 225-235
Technical Paper | doi.org/10.13182/NSE77-A27035
Articles are hosted by Taylor and Francis Online.
A new coarse-mesh technique, the constrained finite element method, is formulated from the variational form of the even-parity transport equation: Linear finite elements in space are combined with a P1 constraint on the angular trial functions at selected nodes to obtain a coarse-mesh three-point difference scheme for the scalar flux. Beginning with the same variational form of the transport equation, response matrix equations are derived that differ from the constrained finite element method only in the angular approximation made at the coarsemesh nodes. The two techniques are compared to each other, to S8 reference solutions, and to diffusion calculations for a number of one-group slab geometry problems involving both homogeneous media and lattice cells; they are found to be of comparable accuracy and efficiency. The generalization of the constrained finite element method is discussed.