ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC could improve decommissioning trust fund oversight, OIG reports
The Nuclear Regulatory Commission could do more to improve its oversight of decommissioning trust funds, according to an assessment by the NRC’s Office of Inspector General. In particular, the assessment, which was conducted by Crowe LLP on behalf of the OIG, identified four areas related to developing policies and procedures, workflows, and other support that would enhance NRC oversight of the trust funds.
Yasunori Yamamura, Tamotsu Sekiya
Nuclear Science and Engineering | Volume 63 | Number 2 | June 1977 | Pages 213-217
Technical Note | doi.org/10.13182/NSE77-A27030
Articles are hosted by Taylor and Francis Online.
The Wigner-type continuous slowing down theory is derived from the physical point of view, considering the neutron balance in lethargy space, and is applied to the calculation of neutron spectra in fast-reactor compositions, where the moderating effect of inelastic scattering is very important. The present theory corresponds to the macroscopic representation of the moderating process of neutrons. Its single moderating parameter, (u), is defined as the ratio of slowing down density, q(u), to collision integral, B(u), i.e., This parameter has the physical meaning of “mean-free-path” in lethargy space and is numerically calculated by an iterative technique. The validity of the present formalism is tested by comparing numerical calculations of neutron spectra for some fast-reactor compositions with neutron spectra computed by Monte Carlo simulation.