ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Jim E. Morel, James S. Warsa
Nuclear Science and Engineering | Volume 156 | Number 3 | July 2007 | Pages 325-342
Technical Paper | doi.org/10.13182/NSE06-13
Articles are hosted by Taylor and Francis Online.
We consider two general finite-element lumping techniques for the Sn equations with discontinuous finite-element spatial discretization and apply them to quadrilateral meshes in x-y geometry. One technique is designed to ensure a conservative approximation and is referred to as conservation preserving (CP). The other technique is designed to preserve the exact solution whenever it is contained within the trial space and is referred to as solution preserving (SP). These techniques are applied in x-y geometry on structured nonorthogonal grids using the bilinear-discontinuous finite-element approximation. The schemes are both theoretically analyzed and computationally tested. Analysis shows that the two lumping schemes are equivalent on parallelogram meshes. Computational results indicate that both techniques perform extremely well on smooth quadrilateral meshes. On nonsmooth meshes, the preserving technique retains its excellent performance while the CP technique degrades. The reasons for this degradation are discussed. Although the SP scheme has proven to be generally effective on quadrilateral meshes in x-y geometry, it is not expected to be effective for quadrilaterals in r-z geometry or for hexahedra in three-dimensional Cartesian geometry. Thus, a full lumping procedure for general nonorthogonal meshes that possesses all of the desired properties has yet to be found. For reasons that are discussed, it appears unlikely that such a procedure exists.