ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New consortium to address industry need for nuclear heat and power
Hoping to tackle a growing global demand for energy, The Open Group, a vendor-neutral technology and standards membership organization, has announced the formation of the Industrial Advanced Nuclear Consortium (IANC) to collaborate on finding advanced nuclear energy solutions to serve industrial customers.
E. T. Tomlinson, J. C. Robinson
Nuclear Science and Engineering | Volume 63 | Number 2 | June 1977 | Pages 167-178
Technical Paper | doi.org/10.13182/NSE77-A27020
Articles are hosted by Taylor and Francis Online.
A method is developed for obtaining solutions to the Boltzmann neutron transport equation on irregular triangular grids with nonorthogonal boundaries and anisotropic scattering. A functional is developed from the canonical form of the multigroup transport equation. The angular variable is then removed by expanding the functional in spherical harmonics, retaining only the first two flux moments and limiting the scattering to be linearly anisotropic. The finite element method is then implemented using quadratic Lagrange-type interpolating polynomials to span the spatial domain. The resultant set of coupled linear equations is then solved iteratively using the block successive over-relaxation method. A number of numerical experiments are performed to evaluate the performance of the proposed method. The results are compared to the results obtained by various established methods. In all cases, aggrement is excellent.