ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
L. W. Weston, J. H. Todd
Nuclear Science and Engineering | Volume 63 | Number 2 | June 1977 | Pages 143-148
Technical Paper | doi.org/10.13182/NSE77-A27017
Articles are hosted by Taylor and Francis Online.
The average 240Pu capture cross section was measured from 200 eV to 350 keV. The cross section was normalized at thermal-neutron energies (0.02 to 0.03 eV), and this normalization was confirmed at the 1.06-eV resonance by the black resonance technique. The source of pulsed neutrons was the Oak Ridge Electron Linear Accelerator. The capture gamma-ray detector used was the “total energy detector,” which is a modification of the Moxon-Rae detector. The shape of the neutron flux was measured relative to the 10B(n, α) cross section up to 2 keV and the 6Li(n, α) cross section at higher neutron energies. The results of the measurement define the average capture cross section of 240Pu over a wide neutron energy range to an accuracy of ∼8%, which is significantly better than previously known. The results indicate that the ENDF/B-IV evaluation is ∼25% low above 30-keV neutron energy. The cross section is important in fast plutonium-fueled reactors.