ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
G. P. Sabol, S. G. McDonald
Nuclear Science and Engineering | Volume 63 | Number 1 | May 1977 | Pages 83-90
Technical Paper | doi.org/10.13182/NSE77-A27007
Articles are hosted by Taylor and Francis Online.
Alloying additions of 0.5 and 1.0 wt% niobium, respectively, have been added to Zircaloy-4 in an attempt to improve its high-temperature corrosion resistance. Ingots of these modified alloys were fabricated to a 0.76-mm-thick sheet via a processing sequence compatible with commercial tubing production and were given one of four different final anneals. Subsequent testing indicated that the niobium additions had little or no effect on corrosion resistance in 360°C water. In 427°C steam, however, the 0.5%-niobium addition provided increased resistance to spalling, while the 1.0%-niobium addition decreased both cumulative weight gains and post-transition corrosion rates. The weight gains exhibited by the 0.5%-niobium alloy were relatively insensitive to final heat treatment, whereas the 1.0%-niobium alloy suffered a degradation in properties as the extent of the final anneal increased. These trends in corrosion performance were subsequently correlated with the second-phase particle size distributions present in the alloys, the best performance being obtained when the mean particle diameter was <400 to 500 Å. It was concluded that both niobium additions improved the corrosion performance of Zircaloy-4 at elevated temperatures, but that the best performance was obtained at the 1.0-wt%-niobium level.