ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
H. I. Liou, R. E. Chrien
Nuclear Science and Engineering | Volume 62 | Number 3 | March 1977 | Pages 463-478
Technical Paper | doi.org/10.13182/NSE77-A26985
Articles are hosted by Taylor and Francis Online.
Designers of thermal-neutron reactors have always had to adjust microscopic nuclear cross sections to predict neutron multiplication in slightly enriched uranium lattices. It has been surmised that the problem lies in an overestimation of the neutron capture cross section of 238U below 100 eV. We have measured these cross sections by three independent experiments. First, a series of neutron transmission and self-indication measurements were taken on samples of 238U ranging from 10.79 to 11 620 b/atom in inverse thickness. The level parameters were obtained using area analysis and multilevel fits. Next, the capture cross sections deduced from these level parameters were confirmed by direct measurements on both the continuum and discrete line portions of the low-energy gamma-ray spectra. High resolution measurements on the gamma-ray spectra were carried out from 530 to 900 keV over the neutron energy range from near thermal to ∼20 eV. Finally, a further check was made by activating thin samples of 238U with monochromatic neutrons obtained by Bragg scattering. The result is consistent with the capture cross sections obtained by the gamma-ray spectra measurement. Our results reduce, by 25%, the shielded capture integral discrepancy observed in early Bettis Atomic Power Laboratory critical experiments (TRX) with low-235U-enriched uranium rods latticed in water. When they are coupled with refined lattice calculations, much of the long-standing discrepancy is removed.