ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
R. D. McKnight
Nuclear Science and Engineering | Volume 62 | Number 2 | February 1977 | Pages 309-330
Technical Note | doi.org/10.13182/NSE77-A26967
Articles are hosted by Taylor and Francis Online.
A series of benchmark calculations of critical experiments has been performed to assess the effects that recent changes in the ENDF/B data files have had on calculated liquid-metal fast breeder reactor parameters. Three well-documented critical assemblies were studied using standard methods of fast reactor analysis (two-dimensional multigroup diffusion theory) with both ENDF/B-III and -IV. A review of the changes in the principal cross sections incorporated in the latest evaluation has been made and was used to interpret the changes in calculated integral parameters. Some of the principal cross-section modifications included in ENDF/B-IV were: decreasing (≈2%), src ="fig002.gif" alt=""/> (≈1 to 1.5%), and src ="fig003.gif" alt=""/> (≈3 to 4%) and increasing src ="fig004.gif" alt=""/> (≈1 to 1.5%). In general, improved agreement between measured and calculated integral parameters has been obtained with the new ENDF/B evaluation. The overprediction of 28c/49 ƒ is reduced slightly (≈1.5%); the central worth calculation-to-experiment discrepancy is generally reduced (≈5 to 15%); and little change occurs in the calculated eigenvalues that remain ≈1.0 to 1.5% δk low.