ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
Stanley Woolf, John C. Garth, William L. Filippone
Nuclear Science and Engineering | Volume 62 | Number 2 | February 1977 | Pages 278-295
Technical Paper | doi.org/10.13182/NSE77-A26963
Articles are hosted by Taylor and Francis Online.
A variation of the method of invariant imbedding can be applied to a class of particle transport problems for which the average energy of a particle can be closely correlated to the number of collisions it has undergone in the course of transport through a scattering medium. A method for calculating emergent n'th scattered particle currents from scattering media developed that combines an orders-of-scattering formulation with the invariant imbedding method. The final expressions obtained for these currents assume the form of coupled integral recursion relations expressing the interdependence of the currents of the various scattering orders Extensive numerical results are presented, along with comparisons obtained by other techniques arising from the implementation of these recursion relations. Various cases of neutron and electron scattering, both isotropic and anisotropic, are considered.