ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Karl O. Ott, Robert C. Borg
Nuclear Science and Engineering | Volume 62 | Number 2 | February 1977 | Pages 243-261
Technical Paper | doi.org/10.13182/NSE77-A26960
Articles are hosted by Taylor and Francis Online.
An in-depth discussion of the problems of the current description of the growth rate (or doubling time) of breeder reactor fuel emphasizes the need for conceptually improved computational procedures. The presented derivation of improved measures for the growth of breeder reactor fuel is based on a formally correct description of the fast reactor fuel cycle. From these derivations one obtains a hierarchy of four logically different expressions for the fuel growth rate, which yield formally the same value. The first (and most general) definition is obtained by mathematically expressing the doubling time as a measure of the asymptotically exponential growth of fuel in a system of identical breeder reactors. The second definition represents the condensation of the detailed information of the equilibrium fuel cycle analysis for a single reactor. The third growth rate expression is also based on the detailed fuel cycle analysis. Coefficients of an“integrated fuel cycle model” are obtained from the detailed information. This leads to an eigenvalue problem with the growth rate as eigenvalue and the equilibrium plutonium composition as eigenvector. The fourth growth rate expression is based on a set of isotopic weight factors, which is obtained as solution of the adjoint of the fuel cycle eigenvalue problem employed in the third procedure. The resulting “breeding worth factors” are applied to the production and consumption rates of the four plutonium isotopes. This makes the resulting doubling time formula stationary with respect to variations about a reference reactor and practically independent of the fuel composition.