ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Kohyu Fukunishi
Nuclear Science and Engineering | Volume 62 | Number 2 | February 1977 | Pages 215-225
Technical Paper | doi.org/10.13182/NSE77-A26958
Articles are hosted by Taylor and Francis Online.
Multivariate autoregressive (AR) procedures are introduced as diagnostic tools to extract dynamic,characteristics for detection of malfunctions of a boiling water reactor (BWR) power plant. The problem of estimating AR matrices is equivalent to identifying, from measured random signals of a BWR station, the dynamic parameters of a stationary linear discrete time system derived from an unmeasured uncorrelated white-noise process. To explain the characteristics of a derived AR spectra , a general multiple-input, single-output model is discussed. The experiments were carried out in a 460-MW(e) BWR station. The power spectral density of the averaged neutron flux is decomposed into terms corresponding to sources of noise at points of measurement, where the origin of the noise neutron fluctuation is studied. It is shown fom the analysis that a disturbance of high intensity in neutron fluctuation of the BWR is not Caused by the process var Such Core flow but is possibly caused by the inherent noise.specifically defined in this paper, of the neutron flux itself.