ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
W. Haeck, B. Verboomen
Nuclear Science and Engineering | Volume 156 | Number 2 | June 2007 | Pages 180-196
Technical Paper | doi.org/10.13182/NSE07-A2695
Articles are hosted by Taylor and Francis Online.
Monte Carlo codes are powerful and accurate tools for reactor core calculations. For coupled core-evolution applications, however, they remain rather demanding on calculation time because of the sheer number of reaction rates required for the evolution calculation. To make Monte Carlo burnup codes more efficient, we must therefore optimize reaction rate calculation to reduce calculation time without loss of accuracy. In the optimal situation, the calculation time of the Monte Carlo burnup code should be as close as possible to that of the basic Monte Carlo simulation. Through a deep analysis of the Monte Carlo simulation process as implemented in MCNP or MCNPX, we have developed an optimum approach called hereafter the multigroup binning approach to reaction rate calculation. In this paper, we have analyzed the performance of the multigroup binning approach as compared to a generic Monte Carlo burnup code. We have implemented this multigroup binning approach into ALEPH, a C++ interface code coupling MCNP or MCNPX, and ORIGEN. A number of validation benchmarks and applications of ALEPH to particular problems such as the rim effect and the High Flux Isotope Reactor of Oak Ridge National Laboratory have also been presented.