ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Kanji Tasaka
Nuclear Science and Engineering | Volume 62 | Number 1 | January 1977 | Pages 167-174
Technical Note | doi.org/10.13182/NSE77-A26948
Articles are hosted by Taylor and Francis Online.
Neutron capture effects on the decay power of fission products have been examined by varying the fissile nuclide, neutron spectrum, neutron flux, and irradiation and cooling times. Neutron capture transformations of fission products usually increase the decay power. However, at short cooling times, i.e., <C104 s, the capture effects are small, especially in a thermal reactor, where the negative contribution of135Xe offsets the positive contributions of other nuclides. The capture effect exhibits peaks at cooling times of 106 and 108 s and becomes negligible at 109 s. The former peak results mainly from the increases in the activities of103Ru, 134Cs, 136 Cs, 148Pm, 148Pm, and 156Eu, and the latter by activities of 134 Cs and 154Eu. The capture effect increases with increase of the flux level or irradiation time, and it is approximately proportional to the integrated flux at long cooling times. There is only a slight difference between the capture effect of two thermal reactors with epithermal indices of 0.1 and 0.2. In fast reactors, the effect is smaller than in thermal reactors at cooling times over 105 s, and depends only a little on the fissile nuclide. The decay power in fast reactors depends on the cross-section library selected to less than ∼ 1%.