ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kanji Tasaka
Nuclear Science and Engineering | Volume 62 | Number 1 | January 1977 | Pages 167-174
Technical Note | doi.org/10.13182/NSE77-A26948
Articles are hosted by Taylor and Francis Online.
Neutron capture effects on the decay power of fission products have been examined by varying the fissile nuclide, neutron spectrum, neutron flux, and irradiation and cooling times. Neutron capture transformations of fission products usually increase the decay power. However, at short cooling times, i.e., <C104 s, the capture effects are small, especially in a thermal reactor, where the negative contribution of135Xe offsets the positive contributions of other nuclides. The capture effect exhibits peaks at cooling times of 106 and 108 s and becomes negligible at 109 s. The former peak results mainly from the increases in the activities of103Ru, 134Cs, 136 Cs, 148Pm, 148Pm, and 156Eu, and the latter by activities of 134 Cs and 154Eu. The capture effect increases with increase of the flux level or irradiation time, and it is approximately proportional to the integrated flux at long cooling times. There is only a slight difference between the capture effect of two thermal reactors with epithermal indices of 0.1 and 0.2. In fast reactors, the effect is smaller than in thermal reactors at cooling times over 105 s, and depends only a little on the fissile nuclide. The decay power in fast reactors depends on the cross-section library selected to less than ∼ 1%.