ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. A. W. Gerstl, Donald J. Dudziak, D. W. Muir
Nuclear Science and Engineering | Volume 62 | Number 1 | January 1977 | Pages 137-156
Technical Paper | doi.org/10.13182/NSE77-A26945
Articles are hosted by Taylor and Francis Online.
A computational method to determine cross-section requirements quantitatively is described and applied to the Tokamak Fusion Test Reactor (TFTR). To provide a rational basis for the priorities assigned to new cross-section measurements or evaluations, this method includes 1. quantitative estimates of the uncertainty of currently available data 2. the sensitivity of important nuclear design parameters to selected cross sections 3. the accuracy desired in predicting nuclear design parameters. Perturbation theory is used to combine estimated cross-section uncertainties with calculated sensitivities to determine the variance of any nuclear design parameter of interest. The paper extends the theory for cross-section sensitivity and uncertainty analysis and gives formulas for convenient upper-limit estimates for the variance of integral design parameters due to estimated cross-section uncertainties. The application to the TFTR activation analysis predicts an upper limit for the uncertainty of the calculated personnel dose rate from activated reactor components of∼45% due to all estimated cross-section errors. Since this upper limit is within the accuracy requirement of ≤50% for the calculated maximum allowable personnel dose rate, it is concluded that all nuclear data used for the TFTR activation analysis are adequate in this application.