ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
S. A. W. Gerstl, Donald J. Dudziak, D. W. Muir
Nuclear Science and Engineering | Volume 62 | Number 1 | January 1977 | Pages 137-156
Technical Paper | doi.org/10.13182/NSE77-A26945
Articles are hosted by Taylor and Francis Online.
A computational method to determine cross-section requirements quantitatively is described and applied to the Tokamak Fusion Test Reactor (TFTR). To provide a rational basis for the priorities assigned to new cross-section measurements or evaluations, this method includes 1. quantitative estimates of the uncertainty of currently available data 2. the sensitivity of important nuclear design parameters to selected cross sections 3. the accuracy desired in predicting nuclear design parameters. Perturbation theory is used to combine estimated cross-section uncertainties with calculated sensitivities to determine the variance of any nuclear design parameter of interest. The paper extends the theory for cross-section sensitivity and uncertainty analysis and gives formulas for convenient upper-limit estimates for the variance of integral design parameters due to estimated cross-section uncertainties. The application to the TFTR activation analysis predicts an upper limit for the uncertainty of the calculated personnel dose rate from activated reactor components of∼45% due to all estimated cross-section errors. Since this upper limit is within the accuracy requirement of ≤50% for the calculated maximum allowable personnel dose rate, it is concluded that all nuclear data used for the TFTR activation analysis are adequate in this application.