ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. A. W. Gerstl, Donald J. Dudziak, D. W. Muir
Nuclear Science and Engineering | Volume 62 | Number 1 | January 1977 | Pages 137-156
Technical Paper | doi.org/10.13182/NSE77-A26945
Articles are hosted by Taylor and Francis Online.
A computational method to determine cross-section requirements quantitatively is described and applied to the Tokamak Fusion Test Reactor (TFTR). To provide a rational basis for the priorities assigned to new cross-section measurements or evaluations, this method includes 1. quantitative estimates of the uncertainty of currently available data 2. the sensitivity of important nuclear design parameters to selected cross sections 3. the accuracy desired in predicting nuclear design parameters. Perturbation theory is used to combine estimated cross-section uncertainties with calculated sensitivities to determine the variance of any nuclear design parameter of interest. The paper extends the theory for cross-section sensitivity and uncertainty analysis and gives formulas for convenient upper-limit estimates for the variance of integral design parameters due to estimated cross-section uncertainties. The application to the TFTR activation analysis predicts an upper limit for the uncertainty of the calculated personnel dose rate from activated reactor components of∼45% due to all estimated cross-section errors. Since this upper limit is within the accuracy requirement of ≤50% for the calculated maximum allowable personnel dose rate, it is concluded that all nuclear data used for the TFTR activation analysis are adequate in this application.