ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
K. Asatani, M. Shiotani, Y. Hattori
Nuclear Science and Engineering | Volume 62 | Number 1 | January 1977 | Pages 9-19
Technical Paper | doi.org/10.13182/NSE77-A26935
Articles are hosted by Taylor and Francis Online.
A new method based on the singular perturbation theory is presented for synthesizing suboptimal control of nuclear reactors with spatially distributed parameters. The inverse of the neutron velocity is regarded as a small perturbing parameter, and the model, adopted for simplicity, is an infinite slab reactor described by the one-group diffusion equation. A control is found for the problem of transferring a given distributed neutron flux to the desired one assuming the deviation is small. It is shown that the Helmholtz mode is suited for the singular perturbation technique when one carries out the modal expansion, and the mode controllability is then determined in view of the asymptotic stability of solutions, which depends on the criticality condition. The theoretical estimation of the error of solution is also attached. A numerical example is given showing a large saving of computation time in the present method.