ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
Bengt G. Carlson
Nuclear Science and Engineering | Volume 61 | Number 3 | November 1976 | Pages 408-425
Technical Paper | doi.org/10.13182/NSE76-A26927
Articles are hosted by Taylor and Francis Online.
A general method of characteristics for solving the multigroup transport equation is developed. This is combined with an adaptive difference scheme, called the modified diamond scheme, and is then applied to the finite difference form of the equation. This formulation is obtained from the discrete ordinates equation, which in turn derives from the multigroup equation, both on the basis of consistency arguments. In this connection two forms of the multigroup equation are used, and the diffusion and other important limits also have a bearing on the final difference equation. The new approaches resolve a number of theoretical and practical difficulties with Sn-type transport calculations, in particular in curved and multidimensional geometries. They lead to a firmer basis for discrete ordinates quadrature sets and to better control, mesh cell by mesh cell, over flux extrapolation, including methods to smooth out unwanted flux oscillations. The total effect is a more consistent treatment of the transport equation together with improved accuracy, fewer breakdowns, and more speed in the calculations, while keeping close to the physics of the problem and retaining the basic simplicity of the difference approach.