ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Yasunori Yamamura
Nuclear Science and Engineering | Volume 61 | Number 3 | November 1976 | Pages 377-387
Technical Paper | doi.org/10.13182/NSE76-A26924
Articles are hosted by Taylor and Francis Online.
To estimate analytically the effects of discrete model and evaporation model inelastic scattering on the fast neutron spectrum, the original Greuling-Goertzel (GG) approximation was developed with the help of the generalized function theory. In place of the collision density function ψ(u), the two-term Taylor's expansion of a test function of a functional ψ was proposed to obtain analytic expressions of lethargy moments of inelastic scattering kernels. By using these moments, the author derived the standard GG approximation including all inelastic events. By introducing an approximate separable kernel of the evaporation model inelastic scattering, another conventional treatment of inelastic scatterings was proposed, i.e., the external source approximation of inelastic scattering. In this approximate method, elastic scattering was treated by the ordinary GG approximation. The present standard GG theory was useful for the preliminary description of fast neutron spectrum in a mixture in which a large amount of fuel elements is not included, while the external source approximation was shown to estimate reasonably the effects of inelastic scattering on fast neutron spectrum in any medium.