ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. I. Duo, Y. Y. Azmy
Nuclear Science and Engineering | Volume 156 | Number 2 | June 2007 | Pages 139-153
Technical Paper | doi.org/10.13182/NSE05-91
Articles are hosted by Taylor and Francis Online.
Error norms for three variants of Larsen's benchmark problem are evaluated using three numerical methods for solving the discrete ordinates approximation of the neutron transport equation in multidimensional Cartesian geometry. The three variants of Larsen's test problem are concerned with the incoming flux boundary conditions: unit incoming flux on the left and bottom edges (Larsen's configuration); unit incoming flux only on the left edge; unit incoming flux only on the bottom edge. The three methods considered are the diamond-difference (DD) method, the arbitrarily high order transport (AHOT) method of the nodal type (AHOT-N), and of the characteristic type (AHOT-C). The last two methods are employed in constant, linear, and quadratic orders of spatial approximation. The cell-wise error is computed as the difference between the cell-averaged flux computed by each method and the exact value, then the L1, L2, and L error norms are calculated. The new result of this study is that while integral error norms, i.e., L1 and L2, converge to zero with mesh refinement, the cellwise L norm does not. Via numerical experiments we relate this behavior to solution discontinuity across the singular characteristic. Little difference is observed between the error norm behavior of the methods in spite of the fact that AHOT-C is locally exact, suggesting that numerical diffusion across the singular characteristic is the major source of error on the global scale. Nevertheless, increasing the order of spatial approximation in AHOT methods yields higher accuracy in the integral error norms sense. In general, the characteristic methods possess a given accuracy in a larger fraction of the number of computational cells compared to nodal methods or DD.