ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Thomas J. Seed, Robert W. Albrecht
Nuclear Science and Engineering | Volume 60 | Number 4 | August 1976 | Pages 337-345
Technical Paper | doi.org/10.13182/NSE76-A26895
Articles are hosted by Taylor and Francis Online.
An approximation to the neutron transport equation is made by representing the angular flux with an expansion of the angular dependence in the orthogonal, complete, and binary valued sets of Walsh function. The Walsh approximation is applied to the one-speed, isotropic-scattering, rectangular-geometry form of the neutron transport equation. Sets of partial differential equations for the expansion coefficients are derived along with appropriate boundary conditions for their solution. The sets of equations and boundary conditions resulting from the application of the Walsh expansion to one-and two-dimensional forms of the transport equation are also obtained. The two-dimensional expansion coefficient equations are shown to be not only hyperbolic but also transformable to a set of SN-like equations that are coupled only through the scattering term. Such transformal sets of equations are termed Walsh-derived quadrature sets.