ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Kalimullah
Nuclear Science and Engineering | Volume 60 | Number 3 | July 1976 | Pages 311-314
Technical Note | doi.org/10.13182/NSE76-A26887
Articles are hosted by Taylor and Francis Online.
Starting from the mechanics of collision between two perfectly elastic smooth spherical molecules, the following equation for the heat transfer rate per unit volume from a gas or vapor 2 to another gas 1 in a mixture is derived based on the kinetic theory of gases: Methods of estimating molecular diameters when experimental values are not available are indicated, and values for sodium and UO2 vapor are estimated. For a set of typical values of the parameters, the time constant for the heat transfer is found to be of the order of 10−8 sec, which implies that for processes occurring in time periods greater than those of the order of 10−8 sec, the gases can be assumed to come to a thermal equilibrium at the instant they mix.