ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. T. Mihalczo
Nuclear Science and Engineering | Volume 60 | Number 3 | July 1976 | Pages 262-275
Technical Paper | doi.org/10.13182/NSE76-4
Articles are hosted by Taylor and Francis Online.
The effective delayed neutron fraction from fission was determined for an unreflected uranium (93.2 wt% 235U) metal sphere from the ratio of time-correlated counts in a randomly pulsed neutron measurement to those in a Rossi-α measurement. In the randomly pulsed neutron measurements, a 252Cf source was placed in the sphere which contained a fission counter that, because of its location, did not count neutrons directly from the source. Neutrons from spontaneous fission of 252Cf initiated fission chains in the sphere, and the fission counter detected events from the interaction of neutrons from these fission chains with the uranium of the fission counter. A Type I time analyzer was triggered each time a 252Cf nucleus fissioned and recorded the time distribution of neutrons from the fission chains initiated by neutrons from californium at t = 0. The delayed neutron fraction by this method (60.2 ± 0.8 × 10−4) is ∼11% lower than that from other measurements or calculations that are all in agreement. This low value may be due to an improper theoretical formulation for the correction of point kinetics for spatial effects. The value of this correction factor estimated by another theoretical formulation is 30% larger. An 11% larger correction for spatial effects would produce agreement between this measurement and previously measured results.