ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
J. T. Mihalczo
Nuclear Science and Engineering | Volume 60 | Number 3 | July 1976 | Pages 262-275
Technical Paper | doi.org/10.13182/NSE76-4
Articles are hosted by Taylor and Francis Online.
The effective delayed neutron fraction from fission was determined for an unreflected uranium (93.2 wt% 235U) metal sphere from the ratio of time-correlated counts in a randomly pulsed neutron measurement to those in a Rossi-α measurement. In the randomly pulsed neutron measurements, a 252Cf source was placed in the sphere which contained a fission counter that, because of its location, did not count neutrons directly from the source. Neutrons from spontaneous fission of 252Cf initiated fission chains in the sphere, and the fission counter detected events from the interaction of neutrons from these fission chains with the uranium of the fission counter. A Type I time analyzer was triggered each time a 252Cf nucleus fissioned and recorded the time distribution of neutrons from the fission chains initiated by neutrons from californium at t = 0. The delayed neutron fraction by this method (60.2 ± 0.8 × 10−4) is ∼11% lower than that from other measurements or calculations that are all in agreement. This low value may be due to an improper theoretical formulation for the correction of point kinetics for spatial effects. The value of this correction factor estimated by another theoretical formulation is 30% larger. An 11% larger correction for spatial effects would produce agreement between this measurement and previously measured results.