ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Smitha Manohar, J. N. Sharma, B. V. Shah, P. K. Wattal
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 96-102
Technical Paper | doi.org/10.13182/NSE07-A2688
Articles are hosted by Taylor and Francis Online.
In-house R&D studies have resulted in the development of processes for the bulk separation of trivalent actinides and lanthanides from radioactive high-level liquid waste. Synthesis of solvents, namely, n-octyl (phenyl)-N,N-di-isobutyl carbamoyl methyl phosphine oxide and diglycolamide-based tetra (2-ethylhexyl) diglycolamide (TEHDGA), at the required purity has been carried out, and a suitable process for their respective use in actual application has been developed. Inactive scale engineering runs comprised of simultaneous extraction and stripping operations were carried out to establish the process on an engineering scale, including reuse of the solvent system. The composition of surrogate high-level waste (HLW) used at engineering-scale studies corresponds to first-cycle raffinate from reprocessing of long-cooled pressurized heavy water reactor fuel with a burnup of 6500 MWd/tonne. Since trivalent lanthanides and actinides exhibits similar extraction behavior at higher acidity, cerium and lanthanum were only used in making surrogate HLW to represent all the trivalent lanthanides and actinides. Indigenously developed mixer-settlers using a passive system of mixing were used for these runs. Over a period of ~10 h, ~300 l of surrogate HLW solutions were contacted with solvent. The results of such repeated trials have shown near-total removal of cerium and lanthanum (>99.8% and 97%, respectively) at aqueous-to-organic ratio of 2.5:1 for a TEHDGA system. As the distribution coefficient values for trivalent actinide (241Am) are found to be significantly higher than those for trivalent lanthanides for both of the solvent systems under consideration, it can be inferred that separation of trivalent actinides along with lanthanides could be feasible using these solvent systems.