ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
R. C. Lloyd, E. D. Clayton
Nuclear Science and Engineering | Volume 60 | Number 2 | June 1976 | Pages 143-146
Technical Paper | doi.org/10.13182/NSE76-A26870
Articles are hosted by Taylor and Francis Online.
A series of experiments was performed providing new criticality data on plutonium-uranium nitrate solutions in cylindrical and spherical geometry. For the experiments in cylindrical geometry, the plutonium content of the total uranium plus plutonium was ∼30 wt%; whereas, in the case of the water-reflected spheres, measurements were performed with both 15 and 30 wt% plutonium. The uranium in the mixture was slightly depleted, containing 0.66 wt% 235U. The plutonium concentration covered by these experiments ranged between 12.4 to 97.3 g Pu/ℓ (uranium plus plutonium concentrations between 30 to 310 g/ℓ. The 240Pu content of the plutonium was 5.6 wt% in the first case and 4. 7 wt% in the second. The experiments were analyzed using ENDF/B-III cross-section data, and criticality factors were computed in each case. Some comparative calculations also were made, showing the differences obtained with ENDF/B-II, ENDF/B-III, and GAMTEC cross sections. The KENO code, with ENDF/B-III cross sections, as well as the HFN code, provide conservative results on the criticality factors for these systems. The average value of the computed keff for the cylinders, using KENO, was 1.022, and for the spheres, 1.024 using HFN. Thus, using these methods and cross-section data, the computed critical masses and volumes would be expected to be smaller than those measured by ∼2% in terms of keff.