ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. C. Lloyd, E. D. Clayton
Nuclear Science and Engineering | Volume 60 | Number 2 | June 1976 | Pages 143-146
Technical Paper | doi.org/10.13182/NSE76-A26870
Articles are hosted by Taylor and Francis Online.
A series of experiments was performed providing new criticality data on plutonium-uranium nitrate solutions in cylindrical and spherical geometry. For the experiments in cylindrical geometry, the plutonium content of the total uranium plus plutonium was ∼30 wt%; whereas, in the case of the water-reflected spheres, measurements were performed with both 15 and 30 wt% plutonium. The uranium in the mixture was slightly depleted, containing 0.66 wt% 235U. The plutonium concentration covered by these experiments ranged between 12.4 to 97.3 g Pu/ℓ (uranium plus plutonium concentrations between 30 to 310 g/ℓ. The 240Pu content of the plutonium was 5.6 wt% in the first case and 4. 7 wt% in the second. The experiments were analyzed using ENDF/B-III cross-section data, and criticality factors were computed in each case. Some comparative calculations also were made, showing the differences obtained with ENDF/B-II, ENDF/B-III, and GAMTEC cross sections. The KENO code, with ENDF/B-III cross sections, as well as the HFN code, provide conservative results on the criticality factors for these systems. The average value of the computed keff for the cylinders, using KENO, was 1.022, and for the spheres, 1.024 using HFN. Thus, using these methods and cross-section data, the computed critical masses and volumes would be expected to be smaller than those measured by ∼2% in terms of keff.