ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
U. C. Bergmann, P. Grimm, F. Jatuff, M. F. Murphy, R. Chawla
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 86-95
Technical Paper | doi.org/10.13182/NSE07-A2687
Articles are hosted by Taylor and Francis Online.
The reaction-rate ratio C8/Ftot, neutron captures in 238U to total fissions, has been measured in 80 out of 96 fuel rods of a Westinghouse SVEA-96+ boiling water reactor fuel assembly. High-resolution gamma spectroscopy was performed on individual fuel rods, withdrawn from the SVEA-96+ assembly after irradiation at low power in the center of the LWR-PROTEUS reactor core. Absolute experimental errors of 1.7% and relative errors of 0.6% (for rod-to-rod ratios) were achieved. The experimental results were used as a database for validation of four different calculational tools: CASMO-4 and HELIOS as commercial assembly codes, the Paul Scherrer Institute in-house code BOXER, and the Monte Carlo transport code MCNPX. In general, on the level of a few percent, there is good agreement between experiment and calculations, the use of a recently proposed 239Np gamma-ray emission probability improving even further the agreement. However, the highly heterogeneous design of the SVEA-96+ assembly (both in terms of material compositions and neutron moderation conditions) causes some problems. Clear deviations from assembly mean values are found among the burnable absorber fuel rods that are grouped in clusters (direct neighbors), a unique feature of this assembly design. For these rods the codes overpredict C8/Ftot by several percent, including MCNPX. Additional trends, not present in the results from the Monte Carlo calculation which generally shows the best overall agreement with experiment, are identified for the deterministic codes.