ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Harvey J. Amster, M. Jahed Djomehri
Nuclear Science and Engineering | Volume 60 | Number 2 | June 1976 | Pages 131-142
Technical Paper | doi.org/10.13182/NSE76-A26869
Articles are hosted by Taylor and Francis Online.
Successive solutions to two coupled integral equations provide the expected statistical error of any Monte Carlo calculation in which the external source is specified and the “score” resulting from each collision has a known probability distribution. Each equation can be transformed into a differential-integro form that is adjoint to the transport equation. This result agrees with the stochastic theory of Bell for those special situations described by both theories. The coupled integral equations in the Monte Carlo theory of Coveyou et al. have other adjoint properties because they describe physically different quantities. In the present theory, the first equation (for the expected value), but not the second (for the expected squared value), can readily be understood in terms of Selengut's general interpretation of adjoint solutions. The principal aim of this work is to provide a method for determining in advance whether or not development of a contemplated Monte Carlo program would be worthwhile. Any of the approximations commonly applied to the transport equation can be used. Some examples are worked out by diffusion theory, interpreted, and tested for accuracy.