ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. T. Mihalczo, M. V. Mathis, and V. K. Paré
Nuclear Science and Engineering | Volume 59 | Number 4 | April 1976 | Pages 350-368
Technical Paper | doi.org/10.13182/NSE76-A26837
Articles are hosted by Taylor and Francis Online.
An experiment was performed with a mock-up of the core of the Fast Flux Test Facility (FFTF) reactor to evaluate three reactivity measurement methods for application to liquid-metal fast breeder reactors (LMFBR): modified source multiplication measurements with the low-level flux monitor for refueling (∼35 dollars subcritical) of FFTF, noise analysis to 35 dollars subcritical, and inverse kinetics rod drop to ∼12 dollars subcritical. To investigate the spatial dependence of these measurement methods and to resolve discrepancies previously reported, detectors were placed in the core, reflector, and radial shield, and experimental data were collected with the reactivity at near delayed criticality to ∼35 dollars subcritical. Conclusions from this experiment are the following. Low-level flux monitors in the shield of the FFTF will be adequate for reactivity surveillance during refueling, using the modified source multiplication method calibrated near critical by an inverse kinetics rod drop measurement. The break frequency noise analysis method to −35 dollars with in-core detectors, the modified source multiplication method to −35 dollars, and inverse kinetics rod drop method to -12 dollars with detectors at all locations (corrected for changes in nuclear parameters), yielded the same reactivities within <5%. From reactor physics considerations, breakfrequency noise analysis with in-core detectors is best for monitoring reactivity down to full shutdown since it requires only a simple correction with reactivity that depends on global parameters of the system rather than a correction that depends on the value of the flux at a point or on the inherent source intensity, such as are required for the modified source multiplication method. However, for simple point kinetics interpretation of the results, the measurements must be made only with in-core detectors.