ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. L. Gralnick
Nuclear Science and Engineering | Volume 59 | Number 4 | April 1976 | Pages 311-318
Technical Paper | doi.org/10.13182/NSE76-A26833
Articles are hosted by Taylor and Francis Online.
A step-wise tensor transformation technique is presented for the transformation of the single energy group transport equation to an arbitrary spatial coordinate system. Both gradient and divergence forms of the equation are given, and the same method is applied to the derivation of the diffusion approximation. We demonstrate that using an orthogonal representation of the propagation vector will simplify the divergence form of the equation. The application of this technique is in the representation of the transport equation in coordinate systems other than the usual rectangular, cylindrical, and spherical ones. Its use is demonstrated by transforming the transport equation to a toroidal coordinate system consisting of nested circular toroids.