ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
H. K. Cho, B. J. Yun, C.-H. Song, G. C. Park
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 40-54
Technical Paper | doi.org/10.13182/NSE07-A2683
Articles are hosted by Taylor and Francis Online.
In a nuclear reactor vessel downcomer incorporating the safety feature of direct vessel injection (DVI), the direct bypass of emergency core coolant (ECC) is activated during the reflood phase of a large-break loss-of-coolant accident due to momentum transfer between the downward liquid film and transverse gas. Direct ECC bypass is reportedly the major bypass mechanism of ECC, and various experiments have been performed to obtain detailed information about the ECC bypass in a DVI downcomer. In the present study, a model of the direct ECC bypass was developed based on two-dimensional two-fluid equations for the adiabatic two-phase flow to predict the ECC bypass flow rate. The direct ECC bypass fractions were calculated with various interfacial friction factor correlations, and the results were compared with the available experimental data. The values predicted by the current model showed reasonably good agreement with the experimental data at bypass fractions >40% when applying the interfacial friction factor model developed in a countercurrent flow condition. However, when the bypass fraction was <40%, models incorporating cocurrent annular flow provided better results than those with countercurrent flow. These results suggest that a transition occurs from a smooth film to a rough film as the gas flow rate increases, and hence, interfacial friction factor models that adequately incorporate this transition are necessary to predict the direct ECC bypass phenomenon.