ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
L. L. Carter, C. A. Forest
Nuclear Science and Engineering | Volume 59 | Number 1 | January 1976 | Pages 27-45
Technical Paper | doi.org/10.13182/NSE76-A26806
Articles are hosted by Taylor and Francis Online.
The coefficients of a truncated Legendre series are usually used in multigroup cross-section sets to describe the angular distribution for a group-to-group scattering event. Discrete ordinates codes use the truncated Legendre series because this representation of the scattering angle can be used with the addition theorem to conveniently treat the scattering source term. However, the truncated Legendre series has inherent disadvantages for Monte Carlo calculations. In this paper, we examine the truncated Legendre series representation, a discrete angle representation, a step function representation, and an exact representation that is applicable for isotropic scattering in the center-of-mass system. The three approximate representations use the coefficients of a truncated Legendre series as a working base. We show in a sample problem that the step function representation has advantages for multigroup Monte Carlo calculations, and we recommend its inclusion as an option in multigroup codes.