ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Tunc Aldemir
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 497-507
Technical Note | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2680
Articles are hosted by Taylor and Francis Online.
Probabilistic dynamics (or continuous event tree approach) is a methodology used for the probabilistic risk assessment of systems where statistical dependence between failure events may arise because of indirect coupling through the controlled/monitored physical process and/or direct coupling through software/hardware/human intervention. Both the continuous and discrete time/space forms of the probabilistic dynamics frameworks assume that the set of possible trajectories describing the evolution of the system as a function of time in its state-space consists of measurable (and hence compact) subsets. Using a reduced-order boiling water reactor model, it is shown that this assumption may not be valid for systems of practical interest to nuclear engineering. The consequences of violating the measurability assumption on the probabilistic model accuracy are illustrated for the discrete time/state-space approach. Some guidelines for the choice of time/state discretization are also proposed.