ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
H. Ing, W. G. Cross
Nuclear Science and Engineering | Volume 58 | Number 4 | December 1975 | Pages 420-430
Technical Paper | doi.org/10.13182/NSE75-A26797
Articles are hosted by Taylor and Francis Online.
Spectra, calculated by Monte Carlo, are presented for neutrons transmitted through various thicknesses of iron from sources of fission neutrons, H2O-moderated fission neutrons, D2O-moderated fission neutrons, and 14.7-MeV neutrons. The sources were located at the center of iron spheres or were in the form of beams incident normally on slabs. Variations in spectral shapes are discussed from the viewpoint of effects on the response of neutron dosimeters. Effective cross sections for threshold detectors 103Rh, 115In, 32S, 237Np, 232Th, and 238U were obtained by averaging the cross sections over the calculated spectra. Average kerma , dose equivalent, and maximum dose per n/cm2 were also calculated. Curves of show the sensitivity of these detectors to spectral changes and permit the computation of correction factors to dosimeter readings.