ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Amazon provides update on its Washington project with X-energy
A year ago this month, Amazon led a $500 million investment in X-energy, alongside Citadel founder Ken Griffin, the University of Michigan, and other investors. In addition to that financing, Amazon pledged to support the development of an initial four-unit, 320-MW project with Energy Northwest in Washington state.
I. Otic, G. Grötzbach
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 489-496
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2679
Articles are hosted by Taylor and Francis Online.
Results of a direct numerical simulation (DNS) for Rayleigh-Bénard convection for the Rayleigh number Ra = 105 in a fluid with the Prandtl number Pr = 0.025, which corresponds to liquid lead-bismuth, are used to analyze the turbulent heat flux and the temperature variance dissipation rate. The results indicate that application of a thermal or a mixed timescale may considerably improve gradient diffusion and algebraic heat flux models at these Rayleigh and Prandtl numbers. Therefore, a good approximation of the temperature variance dissipation rate is required. The standard temperature variance dissipation rate model is investigated using the DNS results. The analysis of the standard model shows the importance of wall functions and qualitatively good predictions by the model for this type of flow. Quantitatively, the model overpredicts the temperature variance dissipation rate evaluated from the results of DNS by ~25%. The two-point correlation method is used to derive new models for the temperature variance dissipation rate. Comparison with DNS results shows qualitatively and quantitatively good predictions by the new models. These new models lead therefore to an increased accuracy of the turbulent heat flux models for this type of flow.