ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
S. Dulla, P. Ravetto
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 475-488
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2678
Articles are hosted by Taylor and Francis Online.
The paper is devoted to the analysis of the importance of fluid-dynamics phenomena in the neutronic simulation of fluid-fuel multiplying nuclear systems. The motion of the delayed neutron precursors has important effects on both steady-state and transient situations. In this paper the role of the motion is studied by assuming that the coupled neutronic-fluid-dynamics model is simplified, introducing different velocity fields as input data for the delayed neutron precursor balance equations. Significant effects are evidenced for steady-state spatial distributions and integral parameters, such as reactivity and effective delayed neutron fractions. Full time-dependent evaluations are also performed to investigate the response in different system configurations to various transient initiator perturbations.